ON ULTRAREGULAR INDUCTIVE LIMITS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Sequentially Retractive Inductive Limits

Every locally complete inductive limit of sequentially complete locally convex spaces , which satisfies Retakh's condition (M) is regular, sequentially complete and sequentially retractive. A quasiconverse for this theorem and a criterion for sequential retractivity of inductive limits of webbed spaces are given.

متن کامل

Sequential Completeness of Inductive Limits

A regular inductive limit of sequentially complete spaces is sequentially complete. For the converse of this theorem we have a weaker result: if indEn is sequentially complete inductive limit, and each constituent space En is closed in indEn, then indEn is α-regular.

متن کامل

On Characters of Inductive Limits of Symmetric Groups

In the paper we completely describe characters (central positive-definite functions) of simple locally finite groups that can be represented as inductive limits of (products of) symmetric groups under block diagonal embeddings. Each such group G defines an infinite graded graph that encodes the embedding scheme. The group G acts on the space X of infinite paths of the associated graph by changi...

متن کامل

Finite rank vector bundles on inductive limits of grassmannians

If P is the projective ind-space, i.e. P is the inductive limit of linear embeddings of complex projective spaces, the Barth-Van de Ven-Tyurin (BVT) Theorem claims that every finite rank vector bundle on P is isomorphic to a direct sum of line bundles. We extend this theorem to general sequences of morphisms between projective spaces by proving that, if there are infinitely many morphisms of de...

متن کامل

Some Utility Theorems on Inductive Limits of Preordered Topological Spaces

One of the main problems in utility theory is to find conditions which imply the numerical representability of topological spaces on which a preorder, or partial order, is defined. This study has reached a wide development in the literature: see, for instance, the works of Eilenberg, Debreu, Fleischer and Jaffray on completely preordered topological spaces [9, 7, 10, 15], and the seminal book b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2000

ISSN: 1027-5487

DOI: 10.11650/twjm/1500407297